3.2.9 \(\int \frac {1}{\sqrt {x} \sqrt {a x+b x^3+c x^5}} \, dx\)

Optimal. Leaf size=51 \[ -\frac {\tanh ^{-1}\left (\frac {\sqrt {x} \left (2 a+b x^2\right )}{2 \sqrt {a} \sqrt {a x+b x^3+c x^5}}\right )}{2 \sqrt {a}} \]

________________________________________________________________________________________

Rubi [A]  time = 0.03, antiderivative size = 51, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.083, Rules used = {1913, 206} \begin {gather*} -\frac {\tanh ^{-1}\left (\frac {\sqrt {x} \left (2 a+b x^2\right )}{2 \sqrt {a} \sqrt {a x+b x^3+c x^5}}\right )}{2 \sqrt {a}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[1/(Sqrt[x]*Sqrt[a*x + b*x^3 + c*x^5]),x]

[Out]

-ArcTanh[(Sqrt[x]*(2*a + b*x^2))/(2*Sqrt[a]*Sqrt[a*x + b*x^3 + c*x^5])]/(2*Sqrt[a])

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 1913

Int[(x_)^(m_.)/Sqrt[(b_.)*(x_)^(n_.) + (a_.)*(x_)^(q_.) + (c_.)*(x_)^(r_.)], x_Symbol] :> Dist[-2/(n - q), Sub
st[Int[1/(4*a - x^2), x], x, (x^(m + 1)*(2*a + b*x^(n - q)))/Sqrt[a*x^q + b*x^n + c*x^r]], x] /; FreeQ[{a, b,
c, m, n, q, r}, x] && EqQ[r, 2*n - q] && PosQ[n - q] && NeQ[b^2 - 4*a*c, 0] && EqQ[m, q/2 - 1]

Rubi steps

\begin {align*} \int \frac {1}{\sqrt {x} \sqrt {a x+b x^3+c x^5}} \, dx &=-\operatorname {Subst}\left (\int \frac {1}{4 a-x^2} \, dx,x,\frac {\sqrt {x} \left (2 a+b x^2\right )}{\sqrt {a x+b x^3+c x^5}}\right )\\ &=-\frac {\tanh ^{-1}\left (\frac {\sqrt {x} \left (2 a+b x^2\right )}{2 \sqrt {a} \sqrt {a x+b x^3+c x^5}}\right )}{2 \sqrt {a}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.02, size = 83, normalized size = 1.63 \begin {gather*} -\frac {\sqrt {x} \sqrt {a+b x^2+c x^4} \tanh ^{-1}\left (\frac {2 a+b x^2}{2 \sqrt {a} \sqrt {a+b x^2+c x^4}}\right )}{2 \sqrt {a} \sqrt {x \left (a+b x^2+c x^4\right )}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[1/(Sqrt[x]*Sqrt[a*x + b*x^3 + c*x^5]),x]

[Out]

-1/2*(Sqrt[x]*Sqrt[a + b*x^2 + c*x^4]*ArcTanh[(2*a + b*x^2)/(2*Sqrt[a]*Sqrt[a + b*x^2 + c*x^4])])/(Sqrt[a]*Sqr
t[x*(a + b*x^2 + c*x^4)])

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.36, size = 52, normalized size = 1.02 \begin {gather*} \frac {\tanh ^{-1}\left (\frac {\sqrt {a} \sqrt {x}}{\sqrt {c} x^{5/2}-\sqrt {a x+b x^3+c x^5}}\right )}{\sqrt {a}} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[1/(Sqrt[x]*Sqrt[a*x + b*x^3 + c*x^5]),x]

[Out]

ArcTanh[(Sqrt[a]*Sqrt[x])/(Sqrt[c]*x^(5/2) - Sqrt[a*x + b*x^3 + c*x^5])]/Sqrt[a]

________________________________________________________________________________________

fricas [A]  time = 1.17, size = 137, normalized size = 2.69 \begin {gather*} \left [\frac {\log \left (-\frac {{\left (b^{2} + 4 \, a c\right )} x^{5} + 8 \, a b x^{3} + 8 \, a^{2} x - 4 \, \sqrt {c x^{5} + b x^{3} + a x} {\left (b x^{2} + 2 \, a\right )} \sqrt {a} \sqrt {x}}{x^{5}}\right )}{4 \, \sqrt {a}}, \frac {\sqrt {-a} \arctan \left (\frac {\sqrt {c x^{5} + b x^{3} + a x} {\left (b x^{2} + 2 \, a\right )} \sqrt {-a} \sqrt {x}}{2 \, {\left (a c x^{5} + a b x^{3} + a^{2} x\right )}}\right )}{2 \, a}\right ] \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(1/2)/(c*x^5+b*x^3+a*x)^(1/2),x, algorithm="fricas")

[Out]

[1/4*log(-((b^2 + 4*a*c)*x^5 + 8*a*b*x^3 + 8*a^2*x - 4*sqrt(c*x^5 + b*x^3 + a*x)*(b*x^2 + 2*a)*sqrt(a)*sqrt(x)
)/x^5)/sqrt(a), 1/2*sqrt(-a)*arctan(1/2*sqrt(c*x^5 + b*x^3 + a*x)*(b*x^2 + 2*a)*sqrt(-a)*sqrt(x)/(a*c*x^5 + a*
b*x^3 + a^2*x))/a]

________________________________________________________________________________________

giac [A]  time = 0.54, size = 56, normalized size = 1.10 \begin {gather*} \frac {\arctan \left (-\frac {\sqrt {c} x^{2} - \sqrt {c x^{4} + b x^{2} + a}}{\sqrt {-a}}\right )}{\sqrt {-a}} - \frac {\arctan \left (\frac {\sqrt {a}}{\sqrt {-a}}\right )}{\sqrt {-a}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(1/2)/(c*x^5+b*x^3+a*x)^(1/2),x, algorithm="giac")

[Out]

arctan(-(sqrt(c)*x^2 - sqrt(c*x^4 + b*x^2 + a))/sqrt(-a))/sqrt(-a) - arctan(sqrt(a)/sqrt(-a))/sqrt(-a)

________________________________________________________________________________________

maple [A]  time = 0.02, size = 72, normalized size = 1.41 \begin {gather*} -\frac {\sqrt {\left (c \,x^{4}+b \,x^{2}+a \right ) x}\, \ln \left (\frac {b \,x^{2}+2 a +2 \sqrt {c \,x^{4}+b \,x^{2}+a}\, \sqrt {a}}{x^{2}}\right )}{2 \sqrt {c \,x^{4}+b \,x^{2}+a}\, \sqrt {a}\, \sqrt {x}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^(1/2)/(c*x^5+b*x^3+a*x)^(1/2),x)

[Out]

-1/2/x^(1/2)*((c*x^4+b*x^2+a)*x)^(1/2)/(c*x^4+b*x^2+a)^(1/2)/a^(1/2)*ln((b*x^2+2*a+2*(c*x^4+b*x^2+a)^(1/2)*a^(
1/2))/x^2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\sqrt {c x^{5} + b x^{3} + a x} \sqrt {x}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(1/2)/(c*x^5+b*x^3+a*x)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/(sqrt(c*x^5 + b*x^3 + a*x)*sqrt(x)), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.02 \begin {gather*} \int \frac {1}{\sqrt {x}\,\sqrt {c\,x^5+b\,x^3+a\,x}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^(1/2)*(a*x + b*x^3 + c*x^5)^(1/2)),x)

[Out]

int(1/(x^(1/2)*(a*x + b*x^3 + c*x^5)^(1/2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{\sqrt {x} \sqrt {x \left (a + b x^{2} + c x^{4}\right )}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**(1/2)/(c*x**5+b*x**3+a*x)**(1/2),x)

[Out]

Integral(1/(sqrt(x)*sqrt(x*(a + b*x**2 + c*x**4))), x)

________________________________________________________________________________________